A NOVEL SYNTHESIS OF (E)-3,7-DIMETHYL-2-OCTENE-1,8-DIOL SECRETED BY THE AFRICAN MONARCH USING THE RING-OPENING REACTION OF α-METHYL-β-PROPIOLACTONE

Tamotsu Fujisawa,* Toshio Sato, Tatsuo Kawara, and Atsunari Noda Chemistry Department of Resources, Mie University, Tsu, Mie 514, Japan

Summary: The regionelective ring-opening reaction of α -methyl- β -propiolactone with 3,3-ethylene-dioxybutylmagnesium bromide in the presence of copper(I) catalyst afforded 2-methyl- β -oxoheptanoic acid, which was easily converted into (E)-3,7-dimethyl-2-octeme-1,8-diol in good yield.

Although (E)-3,7-dimethyl-2-octene-1,8-diol (1) has been characterized as one of the major components of the hairpencil of the Danaus chrysippus (African Monarch butterfly), 1 a few reports have been published on the synthesis of $1.1^{1/2}$. We now wish to describe a novel method for the synthesis of the monoterpenediol 1, utilizing the regionselective ring-opening reaction of α -methyl- β -propiolactone (2) with Grignard reagent in the presence of a copper(I) catalyst. The lactone 2 provides a useful C_4 building block for terpene synthesis, that is, the key reaction of the lactone 2 with 3,3-ethylenedioxybutylmagnesium bromide (4) furnishes the C_8 skeleton from C_3 to C_8 of the terpenediol 1 with proper functional groups.

One of the starting materials, α -methyl- β -propiolactone (2) is easily available by the cyclization of 3-bromo-2-methylpropionic acid. Another starting material, 3,3-methylenedioxybutyl bromide was easily obtained in 79% yield from 3-buten-2-one, ethylene glycol and hydrogen bromide. The reaction of the lactone 2 with the Grignard reagent 4, prepared in 65% yield from the bromide 3 in THF at room temperature, was performed in THF-Me₂S (30:1) in the presence of copper(I) iodide (2 mol%) at -10 °C for 1.5 h. After treatment of the reaction mixture with 3N HCl aq solution, 2-methyl-6-oxoheptanoic acid (5) was obtained in a yield of 87%; bp 130 °C/1 mmHg (lit. 155 ~ 156 °C/7 mmHg); NMR (CCl₄) δ 1.12

HO OH
$$\sum_{0}^{0}$$
 X $X = Br \quad 4 \quad X = MgBr$

(3H, d, J = 6 Hz), 1.55 (4H, m), 2.06 (3H, s), 2.30 (3H, m), 9.15 (1H, s); IR $3500 \sim 3000 \text{ (broad. OH)}$ and $1710 \text{ cm}^{-1} \text{ (C=O)}$.

According to the procedure of Erman. 7 introduction of a prenyl alcohol moiety of 1 by two-carbon homologation was achieved by the rearrangement of tertiary propargyl alcohol to α,β -unsaturated aldehyde. Thus, esterification of 5 with diagomethane and addition of lithium acetylide 8 in THF at -78 $^{\circ}$ C for 2 h qave methyl 2,6-dimethyl-6-hydroxy-7-octynoate (6) in a yield of 97%; bp 160 °C/ 1.5 mmHg; NMR (CC1₄) δ 1.10 (3H, d, J = 7 Hz), 1.38 (3H, s), 1.51 (6H, m), 2.30 (1H, m), 2.35 (1H, s), 3.0 (1H, broad S), 3.60 (3H, s); IR 3450 (OH), 3270 (ECH) and 1720 cm⁻¹ (C=0). Treatment of the propargyl alcohol 6 with polymeric diphenylsilyl vanadate in xylene under reflux for 2 h gave methyl 2,6-dimethyl-8oxo-6-octenoate (7) in 82% yield (E:Z = 3:1). The (E)-isomer was easily isolated by VPC (SE 30, 3m, 150 °C); NMR (CC1₄) δ 1.15 (3H, d, J = 7 Hz), 1.55 (4H, m), $1.9 \sim 2.8 \text{ (3H, m)}, 2.17 \text{ (3H, s)}, 3.60 \text{ (3H, s)}, 5.70 \text{ (1H, d, J = 8 Hz)}, 9.75 \text{ (1H, d)}$ d, J = 8 Hz); IR 1720 (ester carbonyl) and 1660 cm⁻¹ (aldehyde carbonyl). Reduction of 7 with aluminum hydride in THF at -15 °C for 3 h gave (E)-3,7dimethyl-2-octene-1,8-diol (1) in 89% yield; NMR (CCl₄) δ 0.85 (3H, d, J = 7 Hz), 1.30 (5H, m), 1.65 (s, 3H), 2.00 (2H, m), 3.00 (2H, broad S), 3.35 (2H, d, J = 6Hz), 4.05 (2H, d, J = 7 Hz), 5.35 (1H, t, J = 7 Hz); IR 3350 (OH) and 910 cm⁻¹ (C=C). Thus, the desired terpenediol 1 was obtained in an overall yield of 46% in five steps starting from the lactone 2.

As mentioned above, the regionelective ring-opening reaction of α -methyl- β propiolactone as well as β -methyl- β -propiolactone, β should provide a promising method for the synthesis of terpenes by a combination with various organometallic reagents, and by further transformation of the carboxylic group to other functional groups.

References

- J. Meinwald, W. R. Thompson, and T. Eisner, Tetrahedron Lett., <u>1971</u>, 3485.
 G. Bidan, J. Kossanyi, V. Meyer, and J. P. Morizur, Tetrahedron, <u>33</u>, 2193 (1977).
 T. Sato, T. Kawara, M. Kawashima, and T. Fujisawa, Chem. Lett., <u>1980</u>, 571.
 H. Johansson, Chem. Zentralbl., <u>1916</u>, I, 557 [C. A., <u>11</u>, 2576 (1917)].
 T. Sato, T. Kawara, K. Sakata, and T. Fujisawa, Bull. Chem. Soc. Jpn., <u>54</u>, 505 (1981).
- 6. L. Blaha, J. Weichet, and B. Kakac, Collect. Czech. Chem. Commun., 30, 1214 (1965).
 7. M. B. Erman, I. S. Aul'chenko, L. A. Kheifits, V. G. Dulova, J. N. Novikov, and M. E. Vol'pin, Tetrahedron Lett., 1976, 2981.
- 8. M. M. Midland, J. Org. Chem., 40, 2250 (1975).
- 9. T. Fujisawa, T. Sato, T. Kawara, A. Noda, and T. Obinata, Tetrahedron Lett., 21, 2533 (1980); T. Sato, T. Kawara, A. Nishizawa, and T. Fujisawa, ibid., 21, 3377 (1980); T. Fujisawa, T. Sato, T. Kawara, and K. Ohashi, ibid., 22, 4823 (1981).